LASS: X	SUB.: MATH	IS (NCERT BASED)	DATE: 27 -07-202
(i) For which val infinite number o	ues of a and b does th of solutions? 2x + 3y =7 (a - b)x +	REVISION te following pair of linea (a + b)y = 3a + b -2	r equations have an
Solution 2x + 3y -	7 = 0		
(a – b)x + (a + b)y	-(3a + b - 2) = 0		
$\frac{a_1}{a_2} = \frac{2}{a-b}$			
$\frac{b_1}{b_2} = \frac{3}{a+b}$			
$\frac{c_1}{c_2} = \frac{7}{3a+b-2}$			
For infinitely many	y solutions, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$		
$\frac{2}{a-b} = \frac{3}{a+b} = \frac{7}{3a+b-b}$	2		
$\frac{2}{a-b} = \frac{7}{3a+b-2}$		$\frac{2}{} = \frac{3}{}$	
$\Rightarrow 2/a - b = 7/3a$	+ b – 2	$\begin{vmatrix} a-b & a+b \\ a-b & a+b \end{vmatrix}$	
$\Rightarrow 6a + 2b - 4 = 7a$	⁷ a – 7h	$\Rightarrow 2/a - b = 3/a + b$	
	a , b	\Rightarrow 2a + 2b = 3a - 3b	
1 - 0 - 4 - 6			

∴ b = 1

Putting this value in equation (ii), we get

 $a - 5 \times 1 = 0$

∴ a = 5

Hence, a = 5 and b = 1 are the values for which the given equations give infinitely

many solution.

(ii) For which value of k will the following pair of linear equations have no solution?

$$x + y = 1$$

(2k - 1)x + (k - 1)y = 2k + 1

Solution: 3x + y - 1 = 0 (2k - 1)x + (k - 1)y - (2k + 1) = 0 $a_1/a_2 = 3/2k - 1$ $b_1/b_2 = 1/k - 1$ and $c_1/c_2 = -1/-2k - 1 = 1/2k + 1$ For no solutions, $a_1/a_2 = b_1/b_2 \neq c_1/c_2$ $\Rightarrow 3/2k - 1 = 1/k - 1 \neq 1/2k + 1$ $\Rightarrow 3/2k - 1 = 1/k - 1$ $\Rightarrow 3/2k - 1 = 1/k - 1$ $\Rightarrow k - 3 = 2k - 1$ $\therefore k = 2$

Hence, for **k** = 2, the given equation has no solution.

Do your Self

1. For which value of p does the pair of equations given below has unique solution?

$$4x + py + 8 = 0$$
 and $2x + 2y + 2 = 0$.

- **2.** A fraction becomes $\frac{1}{3}$ when 1 is subtracted from the numerator and it becomes $\frac{1}{4}$ when 8 is added to its denominator. Find the fraction.
- **3.** Given a linear equation 2x + 3y 8 = 0. Write another linear equation in two variables such that the geometrical representation of the pair so formed is intersecting lines.
- **4.** Solve 2x + 3y = 11 and 2x 4y = -24 and hence find the value of 'm' for which y = mx + 3.